Forecasting Techniques and NWP

Khalifa Al Sudairi chief of NWP k.alsudairi@met.gov.om

Current State of the Atmosphere

- Get to Know the current State of the Atmosphere
- By Knowing the current State accurately you can do short range forecast.

Current State of the Atmosphere Look to different Satellites Channels

VIS 0.6

VIS 0.8

NIR 3.9

WV 6.2

WV 7.3

IR 9.7

IR 10.8

IR 12.0

HRVIS

Thick highlevel ice clouds

> Thin highlevel ice clouds

> > MSG-1 21 February 2004 13:00 UTC RGB Composite R = IR12.0-IR10.8 G = IR10.8-IR8.7 B = IR10.8

> > > +2

15

Current State of the Atmosphere

Dust

Dust

Look to different RGB products : Each Product show specific feature more clearly

Current State of the Atmosphere

- Surface Charts
- Upper Air Charts
- Metars, Synops, (Ship, Aircraft, Police) Reports

Observe Weather Elements

Analyze !

• Types of analyses performed :

Isobaric analysis

• An isobaric analysis involves the construction of lines of equal mean <u>sea level pressure</u> on a geographic map

Isotherm analysis

Isotherms are lines of equal temperature drawn on weather maps

Fog over salalah

Upper air trough

Advection

The term advection refers to the transport of something from one region to another. Meteorologists are most interested in the advection of variables like temperature, and moisture. The arrows are <u>wind vectors</u> and the horizontal lines are isotherms (lines of constant temperature) in degrees Fahrenheit. Maximum advection when winds perpendicular to line, and zero advection when parallel

(Temperature is Fahrenheit)

Fronts

Air Masses

Very large bodies of air with fairly uniform temp and humidity characteristics

Form in high and low latitudes, not mid-latitudes

Air takes on the characteristics of the source region

Air masses migrate from their source regions, bringing changes in weather to other places

Cold Front

- Cooler air displacing warmer air
- Fastest moving of fronts
- Steep frontal surface marked by cumuliform clouds
- Can produce short-lived heavy precip, t-storms

Warm Front

- Warmer air displacing cooler air
- Move slower than cold fronts
- Gently sloping surface marked by stratus-type clouds
- Can produce extended periods of precip

Tropical cyclone

Tropical cyclone oman

Hurricane Climatology

- 1. Warm Water SST > 26 C (80°F)
- 2. A surface low with unstable air and deep moisture.
- 3. Low wind shear

Where and when do these conditions exist in the world?

Weather associated with tropical cyclone

- Floods
- Strong wind
- Storm surge

Numerical Weather Prediction The modern way to forecast the weather

General Concepts

NWP model Products

48Hr WsEta Valid for: 12UTC 27 JUL, 2005 Based On: 12UTC 25 JUL, 2005 500 hPa Geopotential, Temperature and Wind Workstation Eta 60 km (Hydrostatic)

What is NWP Model?

- Take the equations that describe atmospheric processes.
- Convert them to a form where they can be programmed into a large computer.
- Let the computer to solve them
- This is called a "model" of the atmosphere

سلطنة عمان الهيئة العامة للطيران المدني المديرية العامة للأرصاد

التنبوات العددية العمانية Oman Numerical Weather Prediction													
الاستخدامات	المعايرة	المخرجات	الحوسبة	تطبيق المعادلات	جمع البيانات								
 بالمراحة بالمراحة بالمراحة بالمراحة بالمراحة بالمراحة بالمراحة بالمرحة بالمرحة بالمرحة بالمرحة بالمرحة بالمرحة 	مر بالمحالية مخرجات بتم تحليل ومعايرة مخرجات عناصر الطفس كترجة الحرارة والرياح والرطوبة وغيرها للتقليل من نسبة الخطا 5	لي المحمد المناصر في اعداد و عمل خرائط الطقس و عمل خرائط الطقس الجوية ومدى تطور ها	3 استخدام اجهزة حاسوب فانقة السرعة لحل تلك وتحليل تغير الحالة الفيزياتية للطقس بمرور الزمن	تطبق معادلات فيزيانية وحركة الموانع لمعرفة في الفترة المقبلة من الزمن 2	ا التحليل الرصدي (البياتات التي تم تحليلها) تعتبر كنقطة بداية للنموذج								

2017Oman_NWP

What do we mean by "solve the equations"

- The equations describe how the atmosphere changes with time.
- For example, one equation would be

 $\frac{T Change}{Time} = Solar + Condensation + Convection$ + Evaporation + Advection +

NWP Concept: General overview

- NWP consists in :
 - Subdividing a chosen geographic 3D area in thousands (or millions) of little cubes.

3D cubes of the atmosphere used by NWP models

39	41	41	40	40	43	43	40	40	AS 25	34	34	34	34	34	34	33	33	33	33	33	32	32	32	32	32	31	31	31
41	42	42	41	41	46	мнАфна	38	40	38	34	34	34	34	34	34	33	33	33	33	33	33	32	32	32	32	31	31	31
41	42	43	42	41	45	44	38	4 0	40	38	34	34	34	34	34	33	33	33	33	33	33	32	32	32	32	31	31	31
42	AL ATS IN		NALAIRPO	DRT <mark>43</mark>	BUTTAL	IMI 44	40	41	41	40	35	34	34	34	34	33	33	33	33	33	33	32	32	32	31	31	31	31
43	44	44	44	44	43	43	41	37	41	40	39	34	34	34	34	33	33	33	33	33	32	32	32	32	31	31	31	31
44	45	45	45	44	42	DHANAKCA	лаф	37	41	40	^{46^{HAI}}	BURAK	35	34	33	33	34	33	33	33	32	32	32	32	31	31	31	31
45	45	45	46	44	45 SUNAYN	46	42	40	37	39	41	41	40	39MU	ISANDAL	34 EAR	32	32	33	32	32	32	32	32	31	31	31	30
45	46	46	46	45	46	47	45	42	43	39	39	39	42	42	42	40	40	39	35	35	32	32	32	31	31	31	31	30
46	46	46	47	47	48	48	46	44	43	43	40	40	41	42	43 ^{wa}	di Maawi 42	• 43	вине	41		377	*33	32	32	31	31	31	30
47	47	47	48	48	49	49	47	46	46	44	42	37	40	AL AWAE	[™] ●40	42 54	38 MAIL	43	37	41	40	36	31	32	31	31	30	30
47	48	48	49	48	48	48	47	48 ^{IBRI}	48	47	45	43	33 AL HAME	36	36	39	42	40	38	36	39	39	34	31	31	31	31	30
48	49	49	49	48	47	47	46	47	48	47	46	39	43 Вани а	43	34	3033	39	40	dama w	38 ^{° AT} TAIY	^{AN} ¶1	36	37	33	31	31	30	30
49	49	49	49	49	47	46	46	46	46	45	43	40	44	42 ¹¹²	WA43	4 3	42	42	42	40	40	38	34	36	31	31	31	30
49	49	49	49	49	48	47	48	47	47	46	45	38	45	44	42 MANAH	44	44	43	42	41	42	42	37 (KHALID	32	36	30	30	30
49	49	49	48	48	47	47	47	48	47	46	47	44,	DAM AIRPO	45	44	43	At Auo		42	43 ^	L QABIL 43• BI	42 DIYYAH	41	31	38JR	35-	-33	31
47	47	47	46	47	47	47	47 _{FAI}	HU UZ RA		47	46	45	43	45	43	44	44	43	43	42	41	42	42	39	41	38 R#	40 AS AL HAD	30
46	46	46	46	46	46	47	47	48	47	47	46	46	45	43	45	44	44	43	43	42	41	41	40	41	39	42	35	29
46	46	46	47	47	47	47	48	47	47	46	46	46	45	45	45	45	45	43	43	42	41	40	LAN BAN 39	40	•38	39	31	28
47	46	47	48	48	48	47	47	47	47	47	46	46	46	45	45	45	45	44	42	41	40	40	39	38	37	35	29	28

NWP

Zonal wind u

$$\frac{\partial u}{\partial t} - (\varsigma + f)v + \eta \frac{\partial u}{\partial \eta} = -\frac{1}{a\cos\varphi} \frac{\partial}{\partial\lambda} (\Phi + K) - \frac{RT_v}{a\cos\varphi} \frac{\partial}{\partial\lambda} (\ln p) + \left(\frac{\partial u}{\partial t}\right)_{sub} - K_4 \nabla^4 u - \mu_{lbc} (u - u_{lbc})$$
Meridional wind v
$$\frac{\partial v}{\partial t} + (\varsigma + f)u + \eta \frac{\partial v}{\partial \eta} = -\frac{1}{a} \frac{\partial}{\partial\varphi} (\Phi + K) - \frac{RT_v}{a} \frac{\partial}{\partial\varphi} (\ln p) + \left(\frac{\partial v}{\partial t}\right)_{sub} - K_4 \nabla^4 v - \mu_{lbc} (v - v_{lbc})$$
Temperature T
$$\frac{\partial T}{\partial t} + \frac{1}{u} \left(\mu \frac{\partial T}{\partial t} + v\cos\varphi \frac{\partial T}{\partial t} \right) + \eta \frac{\partial T}{\partial t} = \frac{\alpha\omega}{dt} + \frac{L_v}{dt} C_{tot} + \left(\frac{\partial T}{\partial t}\right) = -K \nabla^4 (T - T_{tot}) = \mu_{tot} (T - T_{tot})$$

$$\frac{\partial I}{\partial t} + \frac{1}{a\cos\varphi} \left(u\frac{\partial I}{\partial\lambda} + v\cos\varphi\frac{\partial I}{\partial\varphi} \right) + \eta\frac{\partial I}{\partial\eta} = \frac{\alpha\omega}{c_p} + \frac{L_v}{c_p}C_{vc} + \left(\frac{\partial I}{\partial t}\right)_{sub} - K_4\nabla^4 \left(T - T_{ref}\right) - \mu_{lbc} \left(T - T_{lbc}\right)$$

Surface pressure p_s

$$\frac{\partial p_s}{\partial t} = -\frac{1}{a\cos\varphi} \int_0^1 \left\{ \frac{\partial}{\partial\lambda} \left(u \frac{\partial p}{\partial\eta} \right) + \frac{\partial}{\partial\varphi} \left(v\cos\varphi \frac{\partial p}{\partial\eta} \right) \right\} d\eta - \mu_{\rm lbc} \left(p_s - p_{s,\rm lbc} \right)$$

NWP concepts : Global & LAM models.

NWP concepts : Global models

- Global models resolve atmospheric equations on the whole glob.
- They can not use very fine resolution because of computers limitations.
- Because of their weak resolution, they can not detect small scale phenomena.
- The most popular global models are :
 - ECMWF/IFS (partially public and received on MDD) : <u>http://www.ecmwf.int</u>
 - NCEP/GFS (completely public) : <u>http://www.ncep.noaa.gov</u>.
 - Météo-France/ARPEGE (not available on the net).
 - German DWD global model.
 - METOFFICE/UKMO Unified Model.
 - Japan Meteorological Agency JMA Global Model.
- Global models are used to forecast general synoptic circulation and to provide Initial and Lateral Boundary Data for Limited Area models.

NWP Concepts : Limited Area Models (LAM).

- They are widely used by Weather Centers over the world.
- The most popular LAMs are:
 - HRM (used in more than 30 Centers and universities)
 - **ETA** (used in more than 50 Centers and Universities).
 - MM5 (AFWA and more than 20 centers over the world).
 - ALADIN (Private Consortium guided by Meteo-France : 15 European and north African countries)
 - **COSMO / LM (COnsortium for Small scale MOdeling guided by DWD).**
 - HIRLAM (Private Consortium : Scandinavian countries and Spain).
 - NMM / WRF (the next generation LAM model taking advantage from both ETA and MM5).
 - COAMPS, RAMS, RUC, ...etc.

NWP Concepts : Initial Data.

- The **actual situation** used by the model to start integrate equations.
- It is created by techniques called **data assimilation**.
- The information used to create initial data are:
 - GTS data (Conventional observations) : SYNOP, SHIP, BUOY, SYNOR, TEMP, PILOT, AIREP, AMDAR, ACAR, SATEM, SATOB).
- The process of initial data creation (analysis and data assimilation) is more **complicate** than the forecast model itself, and more **consumer in term of CPU time**.

Orography (m)

NWP Concepts : Meteograms

NWP Concepts: Off-line Driven Models.

Unled Arab Emiltone Air Encre & Air Dater Bened On: 12UTC 25 JUL, 2005 Junificant Wave Height (frest) and Direction(ac) WAU Wave model DB km

1 2 3 4 6 8 10 12 14 16 18

1 2 3 4 5 6 8 10 12 14 16 20 24

Guidance in Using NWP

Verify each of the models you are intended to use
 Use different NWP sources, as many as you could
 Remember the error margin when you do the forecast

Errors of the NWP

- Due to model formulation.
- Due to uncertainty in the initial state.
- Due to errors in lateral boundary conditions.
- Due to uncertainties in soil fields (soil temperature and soil water content, ...).

Buoys (moored and drifting)

TEMP stations

ATOVS from polar orbiting satellites

46

"Primitive" Weather Forecasting Equations

Pc cluster

A set of computers that work together so that they can be viewed as a single system. Unlike grid computers, computer clusters have each node set to perform the same task, controlled and scheduled by software.

NWP Wave

📧 💿 🗄 🎞 🎞 🍕 🥀 🦂 🦂 🦂 🏈 🎯 🚢 😭 🕗 🖇 🎢 🗷 🦂 🥙 🙆 🍪 🍪 🎭 🗰 🕺 🗞 🕅 📾 😓 🚱 🗐 29.10.2019 12:00 🔹 🏙

Global (undefined) • USER [centre=78/255 process=197] • 27.10.2019 00:00 • Mean sea •

■ Default - 0 27.10.2019 00:00

Swell waves - significant hei - Default: Mean sea

-

Tsunami models

Tsunamis are often no taller than normal wind waves, but they are much more dangerous.

Tsunamis run quickly over the land as a wall of water.

Even a tsunami that looks small can be dangerous!

Any time you feel a large earthquake, or see a disturbance in the ocean that might be a tsunami, head to high ground or inland.

Thank you

رابط تقييم المحاضرة