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Precipitation : Any form of water that falls from clouds towards the ground.
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Weather Features and Clouds Causing Precipitations

Convective Clouds :
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Frontal Systems
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Tropical Storms and Cyclones
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Precipitation is measured or estimated!!

Satellite

Radar

Rain gauges
©The COMET Program




Precipitation Measurement Problems



Ground Weather Stations

-

Datapsio, NOAA, U.S. Navy, NGA, GEBCO
Image Landsat ! Copernicus




Wind Impact !



Rain Gauges
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The Gauge-Induced Impact to Raindrop Paths
for 2-mm Drops in 10 m/s (22 mph) Wind

T

Increased speed
up to 20%

——— Trajectory of 2-mm drop

. Turbulence,
downword motion
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Fall Angle

The Relationship Between Fall Angle, Drop Size, Hydrometeor Phase,
and Effective Gauge Catch in 10 m/s (22 mph) Wind.

The Relationship Between Fall Angle, Drop Size, Hydrometeor Phase,
and Effective Gauge Catch in 10 m/s (22 mph) Wind.

Drop size / phase: Catch:
[J Drop size 2mm [0 Drop size < 1 mm { R Ideal catch | Effective catch
[J brop size =2 3 mm [J Snowflakes p—y —
Drop Size <1 mm
Lateral View Rain'Drop View
Rain angles

Drop size / phase: Catch:

[ Drop size 2mm [ Drop size < 1 mm {A‘*, ideal catch
[ brop size 2 3 mm [] Snowflakes g

| Effective catch
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https://www.meted.ucar.edu/hydro/precip est/partl measurement/print.php

Drop Size 2 mm
Lateral View

Rain Drop View
Rain angle
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https://www.meted.ucar.edu/hydro/precip_est/part1_measurement/print.php

Pulse going out Energy returning
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Hydrometeor Properties That We Need to Know

Hydrometeor Phase
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Influences On Radar Coverage
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Satellites

GPM Constellation of Satellites
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Satellites Radars Rain Gauges

Others
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Integrated Products to Estimate
Precipitation




CHRS : center For Hydrometeorology & Remote Sensing

University of California

B
Develop state-of-the-art systems to

estimate rainfall from satellite
observations at global scale and

high spatial and temporal

Goal:

High spatial and temporal resolution
of precipitation measurements at
global scale for hydrological applications:
= Short-term operational applications
— Flood forecasting

— Data assimilation in numerical
weather models

Information Techno@ t:provide
world-wide access to real-time global
precipitation products:

Long-term climate extreme event
analysis

* Hydro-climate studies
Validation GCM models




Artificial neural network
- what I1s Artificial Meural Network

Artificial Neural Networks (ANNs) are a type of machine learning model that is inspired by the
structure and function of the human brain. ANNs are composed of interconnected nodes, or

“neurons,” that process and transmit information.

D Learning Neural N rk . . . .
B L 9 u al Netwo In an ANN, input data is passed through a network of interconnected neurons, each of which

applies a mathematical function to the input data and produces an output. These outputs are

then used as inputs for other neurons in the network, until a final output is produced.

AMMNs are often used for tasks such as image and speech recognition, natural language

processing, and prediction. They can be trained using a variety of technigques, including

supervised learning (where the network is trained using labeled data) and unsupervised

@nputLayer @ Hidden Layer @ Output Layer learning (where the network learns to identify patterns in unlabeled data).

ANMNNs can be designed with different numbers of layers and types of neurons, and their
architecture can be tailored to the specific task at hand. While ANNs have been successful in
many applications, they can be computationally expensive and require a large amount of

training data to achieve high levels of accuracy.

https://chat.openai.com/chat



https://chat.openai.com/chat

PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks)

Deep Learning Neural Network
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experience and Data from:
dCcuracy Feedback and Corrections other satellites products , radar ,
rain gauges ,NWP and .....

https://chat.openai.com/chat
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Multiple-Source Rainfall Estimation
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PERSIANN Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks

PERSIANN-CCS PERSIANN-Cloud Classification System
PERSIANN-CDR PERSIANN-Climate Data Record
PDIR-Now PERSIANN-Dynamic Infrared Rain Rate near real-time

PERSIANN-CCS-CDR PERSIANN-CCS + PERSIANN-CDR

Data Portal

https://chrsdata.eng.uci.edu/
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https://chrsdata.eng.uci.edu/
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ol CHRS RainSphere

An Infegraled System for Global Salellife Precipitation Dala and Information
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Flood over Pakistan July-Aug 2022
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MEI.v2

3.0

2.0

1.0

0.0

-1.0

Compare La Nina and El Nino rain and see if there is impact over Middle East / globally !

Multivariate ENSO Index Version 2
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For more information, please ask ChatGPT

Thank You
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